Медицина будущего

Могут ли “устаревшие нанороботы”, содержащиеся в человеческом теле, создавать проблемы, если они, в конечном счете, откажут?

Предполагается, что типичный медицинский наноробот будет иметь микронные размеры, позволяющие двигаться по капиллярам, и состоять из углерода.

Некоторые наноустройства способны к самоудалению из организма естественным путем. Другие будут спроектированы таким образом, чтобы позволить их удаление из тела пациента, когда механизмы завершат свою работу. Поэтому опасность того, что “устаревшие нанороботы”, оставшиеся в теле пациента, будут работать неверно, очень мала.

Могут ли медицинские нанороботы обладать искусственным интеллектом, похожим на человеческий?

Это другая широко распространенная ошибка. Многие медицинские нанороботы будут иметь очень простые бортовые компьютеры. Респироциты, например, будут иметь нанокомпьютер, выполняющий всего 1000 операций в секунду.

Большинство нанороботов, исправляющих клетки, не нуждаются в компьютерах с производительностью более ~106-109 операций в секунду для исполнения своей работы. Это на 4-7 порядков меньше вычислительной мощности человеческого мозга, составляющей ~1013 операций в секунду. Большей скорости вычислений для нанороботов не требуется.

Как будут химические агенты, например лекарства против рака, транспортироваться и доставляться к определенной клетке?

Как только определена группа клеток, нуждающихся в доставке лекарства, наноустройства просто доставляют лечащий агент в клетку из бортовых хранилищ. Инъекция 1 см3 1-микронных наноустройств содержит в себе как минимум 0.5 см3 лечащего агента. Практически все эти биллионы нанороботов достаточно “умны” для того, чтобы доставить 100% своего багажа внутрь клетки, поэтому эффективность их применения составит 100%. Сенсоры на борту устройств обеспечат надежный контроль за дозировкой лекарства.

Наночастицы также могут использоваться, чтобы стимулировать врожденные механизмы регенерации.

Опишите, пожалуйста, модель медицинского вмешательства в наноэпоху.

Она будет выглядеть следующим образом: нанороботы, введенные в человеческое тело, будут абсолютно неактивны за пределами области медицинского вмешательства. Даже внутри искомой области нанороботы пребывают неактивными до тех пор, пока их сенсоры не будут активированы индивидуальной последовательностью белков, характерной для клеток, подлежащих лечению. Нанороботы будут также разработаны таким образом, чтобы активироваться только по акустическому сигналу извне (например, от врача, который, наметив пораженную область, выделяет область активирования на пространственной координатной сетке, совмещенной с телом пациента) и только затем производить сенсоринг клеточных белков. Врач целиком контролирует местопребывание и статус нанороботов в течение всего лечения. Сигналы на остановку нанороботов могут быть поданы в любое время.

Также важно, что при этом нанороботы смогут обмениваться данными о своем местоположении, характере заболевания и о процессе лечения. Диапазон передачи сигналов от отдельного наноробота ограничен, но и эти технические трудности преодолимы. В этой модели лечения врач получает данные от активных нанороботов. Например, они сообщают врачу, сколько раковых клеток в их окружении; где находятся механизмы и т.д. У бортовых компьютеров наномашин будут системы предотвращения сбоев (подобно пяти независимым бортовым компьютерам в космическом шаттле), устройства блокировки робота при сбоях и системы полной остановки при выводе роботов из тела.

Поэтому при лечении таким способом совершенно неважно “видеть” наноустройства, так как обратная связь от нанороботов облегчит их контроль и визуализацию.

Каково значение наномедицины для человечества?

Наномедицина исключит почти все широко распространенные заболевания двадцатого столетия, боль, увеличит срок жизни человека и расширит наши умственные возможности.

Устройство для хранения данных нанометрических размеров, способное хранить информацию, эквивалентную информации Библиотеки Конгресса, займет всего ~8,000 микрон3, что составляет объем клетки печени и меньше объема, занимаемого нейроном — нервной клеткой. Если

имплантировать подобные устройства в человеческий мозг вместе с устройствами, обеспечивающими к ним доступ, то объем информации, способной храниться в человеческой памяти, неизмеримо вырастет.

Простой нанокомпьютер, выполняющий 1013 операций в секунду, детально описанный Дрекслером, также занимает объем средней человеческой клетки. Этот компьютер эквивалентен (со многими упрощениями) счетной способности человеческого мозга. Он рассеивает в окружающую среду около 0.001 ватт тепла. Человеческий мозг при таком же количестве операций в секунду рассеивает 25 ватт тепла. Если имплантировать в человеческий мозг несколько таких устройств, можно в несколько раз ускорить процессы человеческого мышления.

Хочется надеяться, что основная польза для человечества будет заключаться в том, что благодаря развитию нанотехнологий наступит эра мира, что умные, образованные, здоровые, ни в чем не нуждающиеся люди не захотят воевать друг с другом. Люди, у которых будет возможность прожить долгую полную жизнь, не станут подвергать опасности свое существование.

Перевод Юрия Свидиненко

Pages: 1 2


Метки: FDA, инертность, клетки, наномедицина, поведение

Comments are closed.